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An original theoretical model for vibration onset of the vocal folds in the air-flow coming from
the human subglottal tract is designed, which allows studying the influence of the physical
properties of the vocal folds (e.g., geometrical shape, mass, viscosity) on their vibration
characteristics (such as the natural frequencies, mode shapes of vibration and the thresholds of
instability). The mathematical model of the vocal fold is designed as a simplified dynamic
system of two degrees of freedom (rotation and translation) vibrating on an elastic foundation
in the wall of a channel conveying air. An approximate unsteady one-dimensional flow theory
for the inviscid incompressible fluid is presented for the phonatory air-flow. A generally
defined shape of the vocal-fold surface is considered for expressing the unsteady aerodynamic
forces in the glottis. The parameters of the mechanical part of the model, i.e., the mass,
stiffness and damping matrices, are related to the geometry and material density of the vocal
folds as well as to the fundamental natural frequency and damping known from experiments.
The coupled numerical solution yields the vibration characteristics (natural frequencies,
damping and mode shapes of vibration), including the instability thresholds of the aeroelastic
system. The vibration characteristics obtained from the coupled numerical solution of the
system appear to be in reasonable qualitative agreement with the physiological data and
clinical observations. The model is particularly suitable for studying the phonation threshold,
i.e., the onset of vibration of the vocal folds.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The understanding of the biomechanics of human voice production has increased
substantially during last few years [see, e.g., Titze (1994)]. Human voice normally
originates in the larynx. When air passes the space between the vibrating vocal folds called
0889-9746/02/070931+25 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Scheme of the coupled two-mass model of the vocal folds (Ishizaka & Flanagan 1972).
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glottis, the vibration of the vocal folds is excited as a result of a fluid–structure interaction
mechanism. The glottal oscillations serve as the main generator of the acoustic excitation
of the whole human vocal tract, which finally results in phonation.
Even if the vocal folds are living soft tissues of a complicated material structure

composed of several tissue layers, and their motion is generally a 3-D motion of a
continuous viscoelastic system, they are frequently modelled as dynamic systems with only
a few degrees of freedom (Titze 1994).
The simplest model is a one-mass model where a simple harmonic oscillator represents

each vocal fold (Flanagan & Landgraf 1968). More frequently, two-mass models coupled
by stiffness are used for each vocal fold. Figure 1 depicts the original two-mass model
developed by Ishizaka & Flanagan (1972), that provides the basis for the two-degree-of-
freedom models that have been most frequently used for simulation of voice and speech.
In the last decade, the Ishizaka and Flanagan model was modified, e.g. by Pelorson et al.
(1994a,b) or Steinecke & Herzel (1995). The two-mass models make it possible to simulate
a phase delay between the inlet and outlet parts of the glottis, which has been considered
an important feature observed in real vocal folds [see, e.g., Titze (1994)]. A slightly
different two-degree-of-freedom model of the vocal folds, the simplified translating and
rotating mass model, was developed by Liljencrants (1991). This model of two coupled
mechanical resonators is similar to the model presented here.
Aerodynamic forces, which excite such systems, can be modelled by more or less

complicated expressions for the pressure P in the glottis derived on the basis of the
Bernoulli energy law, e.g., in the following form:

P ¼ ð1� a2=a1Þ ðPs � PiÞ þ Pi:

where a1 is the cross-sectional area of the glottis at the entry (inlet), a2 is the cross-sectional
area of the glottis at glottal exit (outlet), Ps is the subglottal pressure and Pi is the pressure
at the outlet of glottis (Titze 1994). Similar expressions for the aerodynamic forces
developed on the basis of the so-called myoelastic-aerodynamic theory of vocal-fold
vibration can be found in papers where the motion of the vocal folds is simulated (Mergell
1998; Reuter et al. 1999). However, the coupling between the flowing air and the
mechanical system is given here only by the cross-sections a1ðtÞ and a2ðtÞ, which are
dependent on the displacements of the masses. Any influence of the shape of the vocal
folds on the aerodynamic excitation forces is not included.
Pelorson et al. (1994a, b) have incorporated a more realistic rounded shape of the vocal

folds into the Ishizaka–Flanagan model and have also included the consideration of a
moving fluid separation point, on the basis of their experiments on the characteristics of jet
flows in simulated diverging glottal shapes (Pelorson et al. 1995). The glottal geometry
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considered there, however, did not include a factor such as the bulging shape of the vocal
folds [e.g., Alipour & Scherer (2000)], which influences the resulting aerodynamic forces
acting on the focal folds. Here, we present an approach that, among others, enables taking
the bulged shape of the vocal folds into account. The shape of the vocal fold according to
Berry et al. (1994) is considered, in which a smooth convergent glottal inlet changes into a
very short diverging part. There is a sharp-edged outlet, at which the flow separates,
forming a free jet.
Recently, Lous et al. (1998) theoretically analysed a more complex model of voice

production, which included also the influence of acoustic properties of subglottal and
supraglottal systems on the glottal flux during phonation. The original asymmetric
distribution of the two masses and stiffnesses in each of the vocal folds (Ishizaka &
Flanagan 1972) was replaced by a symmetrical one, which allowed for considerable
simplifications of the equations of the two-mass model of the vocal folds. The
aerodynamic forces calculated from the Bernoulli equation were assumed to act on three
massless plates, which determined a piecewise linear shape of each vocal fold. For a basic
model a quasistationary incompressible frictionless fluid flow was supposed, and the time-
dependent lung pressure p0ðtÞ drove the phonation. However, there is no clear relationship
between the parameters of the mechanical model and the characteristics of the real vocal
folds. De Vries et al. (1999) published a sophisticated method for relating the parameters
of the Ishizaka–Flanagan and Pelorson mechanical models to the more advanced, high-
dimensional finite element models of the vocal folds. In the approach presented here, we
attempt to directly relate the properties of the vocal-fold model to the characteristics
measured on the real vocal folds.
Lucero (1999) theoretically studied the nonlinear phenomena (Hopf bifurcations) when

the equilibrium position of the vocal folds becomes unstable. The thresholds of the
stability are given by a critical value of the subglottal pressure or by a critical value of the
glottal half-width. The nonlinear effects are caused by a motion of the flow separation
point during oscillations, when big changes of the shape of the glottis are considered. The
vocal-fold model is different from the model presented here, because Lucero used a
mucosal wave model described by a one-degree-of-freedom dynamic system.
The approach presented here takes into account small amplitudes of the vocal folds and

focuses on the threshold states of the vocal-fold oscillation. Numerical solution of the
coupled fluid-structural vibrations is offered which enables to study frequency modal
characteristics (natural frequencies, damping and mode shapes of vibration) and
instability thresholds of the aeroelastic system. A linear two-degree-of-freedom mechanical
system with simultaneous mass and stiffness coupling is used for modelling the vocal-fold
vibration (Figure 2). This system is equivalent to the dynamical system which consists of
three joined masses vibrating on an elastic continuous foundation (Figure 3). Parameters
of the mechanical part of the model, i.e., the mass, stiffness and damping matrices, are
approximately related to the physiological data, because they are given by a real geometry
of the vocal folds, by the tissue density, and by the fundamental natural frequency and
damping known from experiments. It can be noted that, despite of the attempts starting
already with Ishizaka & Flanagan (1972), there is often not such a direct relationship
between real data and the values of lumped parameters of the simplified models. The
unsteady aerodynamic forces are calculated using one-dimensional flow theory for inviscid
incompressible fluid in the glottis, where the geometrical profile of the vocal folds is
modelled. A potential flow in the glottis is considered up to the point of flow separation,
which is assumed at the sharp trailing edge of the vocal-fold-shaped element
corresponding to a converging prephonatory shape of the glottis (see Figure 4).
Considering small vibration amplitudes up to only the threshold state makes it possible
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Figure 2. Two-degree-of-freedom model of the vocal folds in the air-flow through the glottis.
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Figure 3. Schematic of the equivalent mechanical system.
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to disregard the motion of the flow separation point, which takes place only in relatively
large oscillatory amplitudes at flow-divergent glottal configuration shapes. In the model
presented here it is supposed that the phonation is driven by a self-oscillation mechanism
after crossing a threshold of control parameters for the occurrence of instability in the
system.



Figure 4. Geometry of the vocal fold considered with the centre of gravity at T .
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A similar theoretical model was developed by the authors for a flexibly supported
uniform flat plate vibrating in the wall of a 2-D channel conveying fluid (Simersk!aa &
Hor!aa$ccek 1996; Hor!aa$ccek et al. 1997). Here, the theory is refined by considering a general
profile of the vibrating body, and modified by assuming a continuous elastic foundation
instead of discrete springs underneath.
First, the equations of motion describing the vibration of the vocal-fold-shaped element

will be presented here. Second, the unsteady aerodynamic forces will be ascertained and
the theoretical solution will be presented for calculation of the frequency/modal
characteristics and stability boundaries of the system under investigation. Then several
numerical examples will be given for real data published in the literature, and the results
will be qualitatively compared with the experiments and clinical observations of real
human vocal-folds behaviour.

2. EQUATIONS OF MOTION

Symmetric oscillations of the vocal folds are assumed, and thus only half of the glottal
region is modelled here. The studied fluid–elastic system is schematically shown in Figure
2, and a simplified scheme of the mechanical part is presented in Figure 3. The equations
of motion are derived in detail in Appendix A.
The vibrating body of the mass m, with the moment of inertia I and the centre of

gravity T at the location e is replaced by an equivalent three-mass system, where the
masses

m1;2 ¼
2

L2
I þme2 �me

L

2

� �
; m3 ¼ m 1� 4

e

L

� �2� �
�
4

L2
I ð1Þ

are joined together by a solid massless rod of length L; w1;2ðtÞ are the displacements of
masses m1;2; c is the stiffness of the elastic foundation per unit length. The masses m1;2 are
located at the ends of the rod and the mass m3 is in the middle (see Figure 3). The function
aðxÞ in Figure 2 defines the aerodynamic shape of the body oscillating in a channel
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containing fluid of the density r which enters the glottal region with mean flow velocity U0

at the inlet (x ¼ 0), where H0 is the height of the channel. The perturbation aerodynamic
pressure *ppðx; tÞ is caused by the deflection wðx; tÞ of the body:

wðx; tÞ ¼ ðx� L=2ÞV1ðtÞ þ V2ðtÞ; ð2Þ

where the quantities

V1ðtÞ ¼ ½w2ðtÞ � w1ðtÞ�=L; V2ðtÞ ¼ ½w2ðtÞ þ w1ðtÞ�=2 ð3Þ

represent the pitch and heave motions of the body, or the modes 	10 and 	11 (Titze
1994; Berry et al. 1994). The equivalent aerodynamic excitation forces (Figure 3) are given
by the integrals

F1ðtÞ ¼ h

Z L

0

*ppðx; tÞð1� x=LÞ dx; F2ðtÞ ¼ h

Z L

0

*ppðx; tÞðx=LÞ dx: ð4Þ

where h is the width of the channel; t is the time and x is the axial coordinate.
According to Appendix A, the equations of motion can be written as follows:

M .VVþ B ’VVþ KVþ F ¼ 0; ð5Þ

where M and K are mass and stiffness matrices

M ¼
�m1L=2 m1 þm3=2

m2L=2 m2 þm3=2

" #
; K ¼

�kL=12 k=2

kL=12 k=2

" #
: ð6Þ

A proportional damping matrix B [see, e.g., Inman (1989)] can be defined as follows:

B ¼ e1Mþ e2K; ð7Þ

where e1 and e2 are real constants, which can be approximately adjusted according to the
experimental data (see Section 5.1. and Appendix C). The vectors

VT ¼ ½V1ðtÞ; V2ðtÞ�; FT ¼ ½F1ðtÞ; F2ðtÞ� ð8Þ

are the dynamic response and force vectors; k ¼ cL (N/m) is the coefficient of stiffness of
the elastic foundation under the body; ð ÞT denotes the transpose, and the overdot the time
derivative.
The two-degree-of-freedom dynamic system presented reflects the fundamental

translational and rotational motions of human vocal folds. These motions are crucially
important for normal self-sustained oscillation of the vocal folds (Titze 1994). For
example, considerably less important for phonation is the motion of the vocal folds
in the air-flow (x) direction because the glottal gap is not changed by this motion. Berry &
Titze (1996) considered a continuum model of the vocal folds vibrating in vacuo and
calculated several of the lower natural mode shapes of vibration. The vibrations for the
first mode were predominantly in the x-direction, while the second and third modes
correspond to the translation and rotation, respectively, in the two-degree-of-freedom
model presented here.

3. AERODYNAMIC FORCES

The one-dimensional (1-D) model of the unsteady fluid flow in the rectangular channel of
the heightHðx; tÞ and the width h¼ const. is given by the following Euler (momentum) and
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continuity equations [see, e.g., Norton (1989)]:

r
@Uðx; tÞ

@t
þ rUðx; tÞ

@Uðx; tÞ
@x

þ
@Pðx; tÞ

@x
¼ 0; ð9Þ

@ðrhHðx; tÞDxÞ
@t

¼ ðrUðx; tÞhHðx; tÞÞx � ðrUðx; tÞhHðx; tÞÞxþDx; ð10Þ

where the flow velocity Uðx; tÞ and pressure Pðx; tÞ can be considered to be composed of
the steady and perturbation parts as follows:

Uðx; tÞ ¼ %UU0ðxÞ þ *uuðx; tÞ; Pðx; tÞ ¼ P0ðxÞ þ *ppðx; tÞ; ð11Þ

and according to the previous section (Figure 2),

Hðx; tÞ ¼ H0 � wðx; tÞ � aðxÞ: ð12Þ

Substitution of expressions (11) into equation (9) yields

@ *uu

@t
þ

@ð *uu %UU0Þ
@x

þ *uu
@ *uu

@x
¼ �

1

r
@ *pp

@x
; ð13Þ

where the Bernoulli equation,

1
2r %UU

2

0ðxÞ þ P0ðxÞ ¼ constant; ð14Þ

was used.
In the present paper the attention is focused on the phonatory threshold states, for the

purpose of which only small velocity perturbations ð *uuð@ *uu=@xÞ ! 0Þ can be considered.
Introducing the potential Fðx; tÞ, such that

*uu ¼
@F
@x

; ð15Þ

the perturbation (acoustic) pressure is given by the integration of equation (13) over x:

*pp ¼ �r
@F
@t

þ %UU0ðxÞ
@F
@x

� �
: ð16Þ

Substitution of expressions (11) for Uðx; tÞ and (12) for Hðx; tÞ into equation (10) yields

@w

@t
¼ �

@ðw %UU0ðxÞÞ
@x

þH0
@ *uu

@x
�

@ð *uuwÞ
@x

�
@ðaðxÞ *uuÞ

@x
; ð17Þ

where the continuity equation

%UU0ðxÞðH0 � aðxÞÞ ¼ constant ð18Þ

for the steady flow was used. Integration of equation (17) over x gives

*uuðx; tÞ ¼
1

ðH0 � aðxÞ � wðx; tÞÞ
@

@t

Z
wðx; tÞ dxþ wðx; tÞ %UU0ðxÞ

� �
: ð19Þ

For the phonatory threshold states, only small displacements wðx; tÞ5H0 can be
assumed, and substituting w from equation (2) into (19) the derivative (15) of the potential
becomes

@F
@x

¼
1

H0 � aðxÞ
x2

2
’VV1ðtÞ þ ’VV2ðtÞ �

L

2
’VV1ðtÞ

� �
xþ ’CCðtÞ þ x�

L

2

� �
V1ðtÞ þ V2ðtÞ

� �
%UU0ðxÞ


 �
;

ð20Þ
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where CðtÞ is an unknown function of time. The integration gives the potential in the form

Fðx; tÞ ¼ ’VV1ðtÞI1ðxÞ þ ’VV2ðtÞI2ðxÞ þ ’CCðtÞI3ðxÞ þ V1ðtÞI4ðxÞ þ V2ðtÞI5ðxÞ þ %CCðtÞ; ð21Þ

where %CCðtÞ is another unknown time function and IiðxÞ ði ¼ 1; . . . ; 5Þ are the integrals given
in Appendix B.
Using equations (20) and (21) the perturbation pressure (16) can be written as

*ppðx; tÞ ¼ � r½ .VV1ðtÞI1ðxÞ þ .VV2ðtÞI2ðxÞ þ .CCðtÞI3ðxÞ þ ’VV1ðtÞg1ðxÞ

þ ’VV2ðtÞg2ðxÞ þ
’%CC%CCðtÞ þ ’CCðtÞg3ðxÞ þ V1ðtÞg4ðxÞ þ V2ðtÞg5ðxÞ�; ð22Þ

where giðxÞ ði ¼ 1; 2; . . . ; 5Þ are functions given in Appendix B.
Finally, substituting *pp in equations (4) the aerodynamic forces are given by

F1ðtÞ ¼ � rh½ .VV1ðtÞJ1 þ .VV2ðtÞJ2 þ ’VV1ðtÞJ3 þ ’VV2ðtÞJ4

þ V1ðtÞJ5 þ V2ðtÞJ6 þ .CCðtÞJ7 þ ’CCðtÞJ8 þ
’%CC%CCJ9�; ð23Þ

F2ðtÞ ¼ � rh½ .VV1ðtÞJ10 þ .VV2ðtÞJ11 þ ’VV1ðtÞJ12 þ ’VV2ðtÞJ13

þ V1ðtÞJ14 þ V2ðtÞJ15 þ .CCðtÞJ16 þ ’CCðtÞJ17 þ
’%CC%CCJ18�; ð24Þ

where Ji ði ¼ 1; . . . ; 18Þ are the integrals given in Appendix B.
The functions CðtÞ and %CCðtÞ have to be determined from the boundary conditions for the

flow at the inlet (x ¼ 0) and outlet (x ¼ L), which can be approximated as follows:

*uu ¼
@F
@x

¼ 0jx¼0 and *pp ¼ 0jx¼L: ð25Þ

Satisfying the first of equation (25) and using equation (20) it can easily be found that

’CCðtÞ ¼ V1ðtÞðU0L=2Þ � V2ðtÞU0; ð26Þ

similarly the second of equation (25) by using equation (22) yields

’%CC%CCðtÞ ¼ � .VV1ðtÞI1ðLÞ � .VV2ðtÞI2ðLÞ � ’VV1ðtÞ½I3ðLÞðU0L=2Þ þ g1ðLÞ� þ ’VV2ðtÞ½I3ðLÞU0 � g2ðLÞ�

� V1ðtÞ g4ðLÞ þ g3ðLÞðU0L=2Þ
� 

� V2ðtÞ g5ðLÞ � g3ðLÞU0

� 
; ð27Þ

where the mean flow velocity %UU0ðxÞ at the inlet ðx ¼ 0Þ is denoted by U0 for simplicity.
Finally, substituting the functions ’CCðtÞ and ’%CC%CCðtÞ into equations (23) and (24), the

unsteady aerodynamic forces F1ðtÞ and F2ðtÞ are expressed as functions of the
displacements V1ðtÞ and V2ðtÞ. The aerodynamic coefficients Ji given by the integrals in
Appendix B are functions of only mean (steady) flow velocity %UU0ðxÞ and do not depend on
time.
Using the continuity equation (18), the mean (steady) flow velocity in the glottis ðx 2

h0;LiÞ is as follows:

%UU0ðxÞ ¼
U0

½1� aðxÞ=H0�
; ð28Þ

where U0 and H0 are the flow velocity and the height of the channel, respectively, at the
inlet (x ¼ 0) to the glottal region. The function aðxÞ=H0 is given by the geometry of the
vocal folds and larynx. The air-flow velocity U0 (m/s) is simply related to the so-called
glottal volume velocity (glottal flux)

Q ¼ U02H0h; ð29Þ
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which represents one of the most important physiological characteristics of voiced
sound production; for male adults it is normally in the range Q ¼ 0� 0�6 l/s (Pelorson
1995).

4. SOLUTION OF THE COUPLED PROBLEM

Substitution of the aerodynamic forces F1;2ðtÞ from the equations (23), (24), (26) and (27)
in the equation of motion (5) gives

M .VVþ B ’VVþ KV� rhf #MM .VVþ #BB ’VVþ #KKVg ¼ 0; ð30Þ

where the mass, damping and stiffness matrices of unsteady aerodynamic origin are:

#MM ¼
J1 � J9I1ðLÞ J2 � J9I2ðLÞ

J10 � J18I1ðLÞ J11 � J18I2ðLÞ

" #
; ð31Þ

#BB ¼
#BB11 #BB12

#BB21 #BB22

" #
; #KK ¼

#KK11
#KK12

#KK21
#KK22

" #
; ð32Þ

where

#BB11 ¼ J3 þ J7U0
L

2
� J9 I3ðLÞU0

L

2
þ g1ðLÞ

� �
;

#BB12 ¼ J4 � J7U0 þ J9½I3ðLÞU0 � g2ðLÞ�;

#BB21 ¼ J12 þ J16U0
L

2
� J18 I3ðLÞU0

L

2
þ g1ðLÞ

� �
;

#BB22 ¼ J13 � J16U0 þ J18½I3ðLÞU0 � g2ðLÞ�; ð33Þ

and

#KK11 ¼ J5 þ J8U0
L

2
� J9 g4ðLÞ þ g3ðLÞU0

L

2

� �
;

#KK12 ¼ J6 � J8U0 � J9½g5ðLÞ � g3ðLÞU0�;

#KK21 ¼ J14 þ J17U0
L

2
� J18 g4ðLÞ þ g3ðLÞU0

L

2

� �
;

#KK22 ¼ J15 � J17U0 � J18½g5ðLÞ � g3ðLÞU0�: ð34Þ

Introducing the matrices

A ¼ M� rh #MM; ð35Þ

C ¼ K� rh #KK; D ¼ B� rh #BB; ð36Þ

equation (30) can be written as

A .VVþ CVþD ’VV ¼ 0; ð37Þ

or after transformation into state (4	 4) space as

I 0

0 A

" #
’VV

.VV

" #
¼

0 I

�C �D

" #
V

’VV

" #
; ð38Þ

where I is the unit matrix (2	 2).
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Left multiplication by the inverse matrix A�1 yields

’VV

.VV

" #
¼

0 I

�A�1C �A�1D

" #
V

’VV

" #
; ð39Þ

which is also possible to rewrite as

’yy ¼ #AAy; ð40Þ

where the following notation was introduced

#AA ¼
0 I

�A�1C �A�1D

" #
; y ¼

V

’VV

" #
: ð41Þ

Assuming

y ¼ y0e
st; V ¼ V0e

st ð42Þ

for the dynamic response of the structure, the solution is finally given by the numerical
calculation of the eigenvalues s and eigenvectors y0 for the eigenvalue problem

ð #AA� sIÞy0 ¼ 0: ð43Þ

Calculation of the eigenvalues s and eigenmodes VT
0 ¼ ðV01;V02Þ enables us to study the

dependence of the frequency-modal and damping characteristics of the system on various
physical and physiological parameters (e.g., on the geometry of the glottis, on the shape of
the vocal folds, on the glottal flux, etc.). In this way, it is also possible to calculate a critical
flow velocity U0 at which the system becomes unstable, thus simulating the threshold of
phonation. This situation happens when the real part of the eigenvalue changes sign
from negative (ReðsÞ50) to positive (ReðsÞ > 0). The eigenvalues s and eigenmodes V0
will be further expressed as the complex eigenfrequencies f ¼ Reðf Þ þ iImðf Þ, defined by
f ¼ s=2p, and the dimensionless complex eigenmodes #VV

T

0 ¼ ðV01;V02=LÞ.

5. NUMERICAL ANALYSIS

5.1. Input Data for Numerical Calculations

Generally, in biomechanics it is not easy to measure, and even to find in the literature,
reliable material properties of biological tissues. In the case of the vocal folds the situation
is further complicated due to the lack of knowledge of the living tissue geometry, which
depends on the tension in the vocal fold and varies with the phonation frequency (pitch),
loudness as well as mode of phonation (Hirano 1974, 1975). In order to link our model to
the properties of the real vocal folds, the dimensions and the geometry were, as a first
approximation, taken from a coronal view of the vocal folds published by Berry et al.
(1994, p. 3598, Figure 3). This shape of the vocal fold was approximated by a parabolic
function

aðxÞ ¼ �159�861ðx� 5�812	 10�3Þ2 þ 5�4	 10�3ðmÞ: ð44Þ

The density, length of the glottal region and length of the vocal folds were taken as
follows: rh ¼ 1020 kg/m3, as measured by Perlman & Durham (1987), L ¼ 6�8mm and
h ¼ 18mm, which approximately correspond to male vocal folds (Dedouch et al. 1999).
Using these data and equation (44), the eccentricity e ¼ 7�7106	 10�4 m, the total
mass m ¼ 4�8116	 10�4 kg and the moment of inertia I ¼ 2�3508	 10�9 kgm2 were
calculated, and thus according to equations (1) and (6) the mass matrixM was determined.
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The vocal-fold shape, the dimensions and the calculated position of the centre of gravity T
are shown in Figure 4.
The height H0 of the channel according to Figure 2 is given by

H0 ¼ max aðxÞ þ g; ð45Þ

where x 2 h0;Li and g is the glottal half-width, which is one of the most important control
parameters of the system. The glottal half-width g is associated with the degree of the so-
called adduction of the vocal folds. The air density was taken in the calculated examples as
r ¼ 1�2 kg/m3.
A tuning procedure was used to adjust the stiffness k of the elastic foundation and the

damping coefficients e1, e2 in equations (6) and (7). The tuning procedure was performed in
order to approximate the fundamental natural frequency, Imð f1Þ, and 3 dB half-power
bandwidths Df1 and Df2 of both resonances of the model by values measured on true vocal
folds (Kaneko et al. 1987; $SSvec et al. 2000). Mathematical background of the tuning
procedure is described in more detail in Appendix C.
Because there is large dispersion in the empirical data, especially in the damping

properties of the vocal folds, the tuning procedure was applied on the mechanical system
in vacuo (for r ¼ 0) excluding in this way the influence of the glottal half-width g on the
coefficients e1, e2. First, by changing the stiffness k of the foundation, the desired
fundamental natural frequency Imð f1Þ was tuned and adjusted in the model. Then, the
coefficients e1, e2 of the linear damping approximation (7) were calculated according to the
following approximate formulas derived in Appendix C:

e1 ¼ 2p
Df1Im2f2 � Df2Im2f1

Im2f2 � Im2f1
and e2 ¼

1

2p

� �
Df1 � Df2

Im2f1 � Im2f2
: ð46Þ

The tuning procedure was applied on three sets of measured data [see Table 1 in $SSvec
et al. (2000) and Figures 25�9–25�10 in Kaneko et al. (1987)], and three mathematical
models of the vocal folds denoted by S1, K1 and K2 were created. The calculated
parameters k, e1 and e2 of these models and their fundamental dynamical properties are
summarized in Tables 1–3 including the damping ratios

Di ¼ Dfi=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Re2ð fiÞ� þ ½Im2ð fiÞ�

q
For all the second-mode natural frequencies, Imð f2Þ, in Tables 1–3, we have
approximately Imð f2Þ : Imð f1Þ � 3 : 2, which is in good agreement with experimental
results ( $SSvec et al. 2000).
The eigenmodes for the vocal-fold-shaped element vibrating in vacuo are shown in

Figure 5. Because they do not depend on the stiffness of the elastic foundation (see
Table 1

Frequency and damping characteristics of the model S1 (k ¼ 420N/m, e1 ¼ 113�44 rad/s,
e2 ¼ 146�30	 10�6 s/rad)

Measured data ( $SSvec et al. 2000)
Imð f1Þ ¼ 114Hz Df1 ¼ } D1 ¼ }
Imð f2Þ ¼ 171Hz Df2 ¼ 44Hz D2 ¼ 0�13

Modelled data for r ¼ 0
Imð f1Þ ¼ 114:5Hz Df1¼ 30�3Hz D1 ¼ 0�130
Imð f2Þ ¼ 168:5Hz Df2¼ 44�6Hz D2 ¼ 0�132



Table 2

Frequency and damping characteristics of the model K1 (k ¼ 314�78N/m, e1 ¼ 123 rad/s,
e2 ¼ 55�5	 10�6 s/rad)

Measured data (Kaneko et al. 1987)
Imð f1Þ ¼ 100Hz Df1� 23Hz D1 ¼ 0�12
Imð f2Þ � 1602190Hz Df2� 29Hz D2 � 0�08

Modelled data for r ¼ 0
Imð f1Þ ¼ 99�3Hz Df1¼ 23�1Hz D1 ¼ 0�116
Imð f2Þ ¼ 146�5Hz Df2¼ 27�1Hz D2 ¼ 0�092

Table 3

Frequency and damping characteristics of the model K2 (k ¼ 964�02N/m, e1 ¼ 175 rad/s,
e2 ¼ 6�21	 10�6 s/rad)

Measured data (Kaneko et al. 1987)
Imð f1Þ ¼ 175Hz Df1¼ 29Hz D1 ¼ 0�08
Imð f1Þ � 2402270Hz Df2� 30Hz D2 � 0�06

Modelled data for r ¼ 0
Imð f1Þ ¼ 174�4Hz Df1¼ 29�04Hz D1 ¼ 0�083
Imð f2Þ ¼ 257�1Hz Df2¼ 30�4Hz D2 ¼ 0�059

(a) (b)

Figure 5. Eigenmodes for the models vibrating in vacuo (r ¼ 0): (a) #VV0;1; (b) #VV0;2; (exaggerated amplitudes).
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Appendix C), they are identical for all the models investigated: S1, K1 and K2. Both
eigenmodes are combinations of rotational and translational motion.

5.2. Results of Numerical Calculations

5.2.1. Mathematical model S1

Typical results of computed complex eigenfrequencies, f ¼ Reð f Þ þ iImð f Þ, as functions
of the mean flow velocity U0 are shown in Figures 6 and 8 for two different values of the
glottal half-width g.
For a small gap g ¼ 0�16mm (see Figure 6) the imaginary part of the first frequency,

Imð f1Þ, rapidly decreases when the flow velocity U0 increases. This frequency reaches the



Figure 6. Complex eigenfrequencies fj ¼ Reð fjÞ þ iImð fjÞ (j ¼ 1; 2) for the model S1 as functions of the flow
velocity U0 for the gap g ¼ 0�16mm: }}}, j ¼ 1 (1st mode); } } }, j ¼ 2 (2nd mode).

Figure 7. Eigenmode #VV0;1 at the critical flow velocity for divergence for the model S1 and the gap
g ¼ 0�16mm.
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zero value [Imð f1Þ ¼ 0 and Reð f1Þ ¼ 0] at the critical flow velocity for divergence
U0D1 � 1�267m/s when the divergence instability appears in the system. For higher flow
velocities (U0 > U0D1) Imð f1Þ ¼ 0 and Reð f1Þ > 0, the divergence instability for the



Figure 8. Complex eigenfrequncies fj ¼ Reð fjÞ þ iImð fjÞ (j ¼ 1; 2) for the model S1 as functions of the flow
velocity U0 for the gap g ¼ 0�3mm: }}}, j ¼ 1 (1st mode); } } }, j ¼ 2 (2nd mode).
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first-mode shape of vibration takes place, which means that, according to equation (42),
the displacements of the vibrating element are increasing monotonically in time and the
system is statically unstable (no oscillation arises here). Critical flow velocity for
divergence of the second mode is near the value U0D2 � 2�42m/s. For higher flow
velocities, U0 > U0F1 � 2�72m/s, a coupled-mode flutter theoretically occurs, when
Imð f1Þ > 0 and Reð f1Þ > 0. The flutter instability means that according to equation (42)
the amplitudes of the vibrating element increase exponentially in time, the system is
dynamically unstable and oscillation takes place. The corresponding oscillation frequency
fflutter ¼ Imð f1Þ is called the flutter frequency. It can be said that the flutter frequency
defined here from the aeroelastic point of view corresponds to the phonation or pitch
frequency used in speech terminology. [Apparently, the term ‘‘flutter’’ has a different
meaning in voice/speech literature, (see, e.g., Titze 1994), than in the aeroelastic literature.
For more details about various static and oscillatory types of instabilities from the
aeroelastic point of view, see, e.g., Paı̈doussis (1998)].



Table 4

Normalized eigenmodes #VV0 for zero-flow velocity and for critical flow velocity for divergence for the
model S1 and the gap g ¼ 0�16mm

Mode U0=0 U0=1�267m/s�U0D

#VV0;1 1

0�174þ i 3:1	 10�4

 !
1

�0�040

 !

#VV0;2 1

�0�478þ i 5�8	 10�4

 !
1

�0�378þ i 0�026

 !

Table 5

Normalised eigenmodes #VV0 for zero-flow velocity and for critical flow velocity for flutter for the
model S1 and the gap g ¼ 0�3mm

Mode U0 ¼ 0 U0¼ 2�91 m=s�U0F

#VV0;1 1

0�174þ i 1�7	 10�4

 !
1

�0�298� i 0�067

 !

#VV0;2 1

�0�480þ i 3�2	 10�4

 !
1

�0�275þ i 0�077

 !
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The corresponding normalized, generally complex, eigenmodes #VV0 for the model S1 and
the glottal half-width g ¼ 0�16mm are presented in Table 4 for U0 ¼ 0 and U0D1. At the
critical flow velocity for divergence U0 ¼ U0D1 the rotation prevails for the first-mode
shape of vibration. This unstable eigenmode at the critical flow velocity for divergence
(U0D1 � 1�267m/s) is shown in Figure 7. The vocal fold is, in accordance with equation
(42), sucked into the glottal gap, because for U0 > U0D1 Imð f1Þ ¼ 0 and Reð f1Þ > 0.
For wider glottal half-width g ¼ 0�3mm (see Figure 8) the static divergence instability

does not occur, and the critical flow velocity becomes the velocity U0 ¼ U0F1 � 2�91m/s
for classical single-mode flutter. For the velocity U0F1 both natural frequencies are
identical [Imð f1Þ ¼ Imð f2Þ > 0] and Reð f1Þ ¼ 0. For higher air-flow velocities, U0 > U0F1,
the amplitudes of vibration increase with time because Reð f1Þ > 0 and the system is
dynamically unstable. This regime offers the best conditions for self-sustained oscillations
of the vocal folds, because the energy of the flowing air is transferred into the vibrations of
the vocal folds.
The corresponding normalized eigenmodes #VV0 are presented in Table 5 for U0 ¼ 0 and

U0F1. For zero-flow velocity, when only the fluid added mass influences the mechanical
part of the model by the matrix #MM in equation (30), the eigenmodes are not substantially
influenced by the gap size g (compare Tables 4 and 5). With regard to the critical flow
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velocity for flutter U0 ¼ U0F1, both eigenmodes in Table 5 are very close, and they are
combinations of translational and rotational motion. The motion of the vocal-fold-shaped
element at the critical flow velocity for flutter (U0F1 ¼ 2�91m/s) is shown in Figure 9,
where the displacement Reð #VV0estÞ during one vibration cycle is presented. Due to the fluid-
structure interaction, there is no exact position of the nodal point, which results in a wave-
like motion of the vocal folds.
The results of calculations of the instability boundaries (U0D1 and U0F1) for the system

S1 are shown as functions of the glottal half-width g in Figure 10 in a stability map for the
system with and without dissipation. For the system with proportional damping
(e1 > 0; e2 > 0) and for narrow glottal gaps (g90�2mm), the lowest stability boundary is
given by the critical flow velocity U0D1 for divergence. For wider gaps (g > 0�2mm), the
lowest stability boundary is given by the critical flow velocity U0F1 for flutter. For the
undamped system (e1 ¼ e2 ¼ 0), the stability boundaries for divergence (U0D1) are
unchanged, because the divergence is in principle a static phenomenon and is not
influenced by damping. The stability boundaries for the occurrence of flutter (U0F1) are
lower in this case, however. That reflects the known fact that the lower damping of the
vocal folds is more advantageous for phonation, because a lower air-flow velocity is
needed for starting the instability. Assuming, for instance, the maximum volume flow rate:
Qmax ¼ 1 l/s as an approximate physiological boundary, it can be implied that, for
example, for the glottal gap (abduction) 2g ¼ 2mm the flow source comparable with the
human lungs would not be able to start and support the phonation. The reason is that the
critical air-flow velocity for flutter U0F1 � 8�9m/s presented in Figure 10 for g ¼ 1mm is
(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

Figure 9. Motion of the vocal-fold-shaped element during one period of vibration at the critical flow velocity
for flutter for the model S1 and the gap g ¼ 0�3mm.
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more than two times higher than the flow velocity U0max� 4�33m/s given according to
equations (29) and (45) as

U0max ¼ Qmax=½2ðmax aðxÞ þ gÞh�; x 2 h0;Li: ð460Þ

The flow velocity U0max for the physiological boundary considered is shown as function of
g in Figures 10 and 11 as well. The larger is the glottal half-width g the higher is the critical
flow velocity for reaching the instability, and thus the more difficult is to initialize the
phonation.
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5.2.2. Mathematical models K1 and K2

The results of calculations for the Kaneko data K1 and K2 are presented in Figures 11 and
12. The stability map of the system is shown in Figure 11 in a similar way as used in the
previous model S1. The stability boundaries for the Kaneko data K1 and K2 are generally
in qualitative agreement with the results for the model S1. Moreover, from Figure 11 it is
clear that the higher is the fundamental natural frequency [Imð f1Þ ¼ 100Hz for K1 and
Imð f1Þ ¼ 175Hz for K2], the higher are the critical flow velocities for divergence as well as
for flutter, and thus the more difficult it is to start the phonation.
The flutter frequencies, i.e., fflutter ¼ Imð f1Þ, for the critical flow velocity U0 ¼ U0F1, are

presented in Figure 12 as functions of the glottal half-width g. It can be seen that the wider
the glottal gap, the higher is the flutter frequency. Approximately, for g > 0�4mm,
however, the flutter frequency approaches a nearly constant value, which is somewhat
higher than the first zero-flow natural frequency of the system. Thus, according to the
aeroelastic model developed, the flutter frequency is generally different from the
fundamental natural frequency of the vocal-fold-shaped vibrating element.
Additional analysis of aeroelastic behaviour of the vocal-fold-shaped vibrating element

was performed by the authors (Hor!aa$ccek & $SSvec 2001) recently, calculating more examples
for three different shapes of the vocal folds. In addition to the shape with an intermediate
bulging given by equation (44), another two geometries were considered, which
approximately correspond to female and male vocal-fold shapes, in accordance with
Titze (1989):

af ðxÞ ¼ 0:77120x ðmÞ and amðxÞ ¼ �216�263x2 þ 2�2418 ðmÞ: ð47Þ

It was revealed that, according to the theoretical model developed, the flutter instability
boundaries are lower for the female (linear) geometry af ðxÞ of the vocal folds, which
appears to sustain the phonation more easily.

6. GENERAL DISCUSSION

The model presented here is designed to study the frequency-modal and damping
characteristics of the vocal-fold vibration as well as their phonatory threshold states.
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These characteristics are very important for understanding the mechanism and conditions
for the vocal-fold oscillations under conditions where detailed empirical data is lacking.
The preliminary analysis presented using this model, reveals a behaviour which is in
reasonable qualitative agreement with the clinical observations as well as with the
dynamical properties of the Ishizaka–Flanagan two-mass model of the vocal folds as
analysed by Ishizaka (1988). Ishizaka obtained similar variation of both natural
frequencies with increasing air-flow velocity in the glottis, as shown here in Figure 8,
including the flutter-type instability. The divergence-type instabilities were not described
by Ishizaka, however. Our results reveal that a divergence type of instability takes place in
the case of relatively small glottal gaps (g) at low flow velocities, and according to the
linear approach presented it results in a slight deformation of the vocal folds without any
vibration. When the flow velocity is increased above another threshold value, the
divergence instability is replaced by the flutter type of instability and the vocal folds start
to oscillate.
For showing an approximate quantitative agreement of the preliminary results with

other studies, the stability map in Figure 11 computed for the K1 model with the
fundamental natural frequency 100Hz will be used. For example, the calculated critical
flow velocity for flutter U0F1 ffi 3m/s for the glottal half-width g ¼ 0�4mm gives,
according to equations (29), (44) and (45), the corresponding glottal volume velocity
QF ffi 0�63 l/s. This is only slightly higher than the value encountered in the literature for
male adults (Pelorson et al. 1995). Using Bernoulli’s law and the continuity equation, the
pressure difference between the inlet (x ¼ 0) and outlet (x ¼ L) of the glottal region can be
expressed as

DP ¼ 1=2rU2
0fH0=½H0 � aðLÞ�g2; ð48Þ

where H0ðgÞ and aðLÞ are defined by equations (44) and (45), respectively. Substituting
g ¼ 0�4mm, U0 ¼ U0F1 ffi 3m/s, r ¼ 1�2 kg/m3 and L ¼ 6�8mm, the so-called
phonation threshold pressure DPth ¼ 588 Pa can be estimated from here. This value is
higher than the value encountered in the literature for humans [around 3 cmH2O, thus
approximately 300 Pa, for the phonatory frequencies around 100Hz in accordance
with Verdolini-Marston et al. (1990)], however, not much higher than, for example,
the phonation pressure DPth ¼ 4502500 Pa calculated for g ¼ 0�420�6mm by Lucero
(1998) for much smaller vocal-fold-shaped element (L ¼ 6mm, h ¼ 14mm and
aðLÞ ffi 1�2mm) using a completely different model for vocal-fold vibration. Finally, we
can note, that in the case of the flutter instability considered, Bernoulli’s law and the
continuity equation give the maximum flow velocity in the narrowest part of glottis
43.5m/s. This value is in the range of air-flow velocities, which justifies the assumption of
fluid incompressibility.
The model is designed as a first approximation of the vocal-fold vibratory system.

Certain simplifications are incorporated in the model; e.g., the elastic properties for the
pitch and heave motion are not separately modifiable (like in the Liljencrants and
Ishizaka–Flanagan types of models) but are rather determined by the mass distribution of
the vibrating element and the properties of the elastic foundation. Furthermore, the
viscous fluid forces are not taken into account, and only small disturbances of the air-flow
velocity are allowed [corresponding to the condition *uuð@ *uu=@xÞ ! 0 used in equation (13)].
The latter condition means that the model is restricted to simulating phonation threshold
states, excluding the adjustments with closed glottis and the collision of the two vocal
folds. The model is able to provide information, e.g. on conditions for a soft voice onset or
for breathy voicing when the glottis never closes completely. This might be done by
calculating the critical parameters at which the system loses stability.
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Simultaneously with the statement that further improvements of the present model are
possible, it is important to realize that the limitations of the theory presented here arise
mainly in the fluid part of the problem. The mechanical part of the vocal-fold model could
be modified much more easily; e.g., (i) to replace the continuous elastic foundation by two
or more discrete springs, enabling an independent tuning of both natural frequencies, (ii)
to introduce more degrees of freedom in the mechanical system, (iii) to include stiffness
and damping nonlinearities in a similar way as in our previous paper (Hor!aa$ccek et al. 1996),
or even (iv) to include a model of soft impacts (Peterka & Sz .ooll .oos 1999) in the numerical
simulation of the vocal-folds oscillation.

7. CONCLUSIONS

A newly developed theoretical aeroelastic model of vocal-folds vibration was presented,
which was adjusted to approximately correspond to the measured properties of the vocal
folds. The design of the model enables the study of the influence of various geometrical,
material and fluid flow parameters on the dynamical characteristics and aeroelastic
stability of the system. The mass, stiffness and damping matrices of the mechanical part of
the model are simply related to the physiological data.
Preliminary numerical calculations of the vibration characteristics and stability

boundaries proved that the present aeroelastic model of vocal-fold vibration (i) shows
dynamical behaviour which approximately corresponds the dynamical behaviour of the
real vocal folds, (ii) shows stability boundaries which approximately correspond to the
measured thresholds of phonation in humans, (iii) reasonably relates the conditions and
mechanism for starting the vocal-fold vibration to the states at which the stability
boundaries of the aeroelastic system are crossed and the energy transfer from the air-flow
to the vocal folds starts self-sustained oscillations.
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HorÁC̆ek, J. & $SSvec, J. G. 2000 Aeroelastic model of vocal-fold vibration. In Flow-Induced
Vibration (eds S. Ziada & T. Staubli), pp. 419–425. Rotterdam: A.A. Balkema.

HorAŁ C� ek, J. & $SSvec, J. G. 2001 Analysis of aeroelastic behaviour of the vocal-fold-shaped vibrating
element. In Vth International Conference Advances in Quantitative Laryngoscopy, Voice and
Speech Research, 27–28 April 2001, Groningen (CD-ROM compiled by H. Schutte). Groningen
Voice Research Lab, University of Groningen, The Netherlands.

HorAŁ C� ek, J., VeselYŁ , J. & Uruba, V. 1997 Aeroelastic instability of a flexibly supported plate
vibrating in a channel. Engineering Mechanics 4, 335–348 (in Czech).

Inman, D. J. 1989 Vibration: with Control, Measurement, and Stability. Englewood Cliffs, NJ:
Prentice-Hall.

Ishizaka, K. & Flanagan, J. L. 1972 Synthesis of voiced sounds from a two-mass model of the
vocal cords. The Bell System Technical Journal 51, 1233–1268.

Ishizaka, K. 1988 Significance of Kaneko’s measurement of natural frequencies of the vocal folds.
In Vocal Folds Physiology, Vol. 2: Voice production mechanisms and functions (ed. O.
Fujimura), pp. 181–190. New York: Raven Press.

Kaneko, T., Masuda, T., Shimada, A., Suzuki, H., Hayasaki, K. & Komatsu, K. 1987
Resonance characteristics of human vocal fold in vivo and in vitro by an impulse excitation. In
Laryngeal Function in Phonation and Respiration (eds T. Baer, C. Sasaki & K.S. Haris).
pp. 349–365. Boston: A College-Hill Press/Little, Brown and Company.

Liljencrants, J. 1991 A translating and rotating mass model of the vocal folds. In Speech
Transmission Laboratory}Quarterly Progress and Status Report 1/1991, Stockholm,
pp. 1–18.

Lous, N. J. C., Hofmans, G. C. J., Veldhuis, R. N. J. & Hirschberg, A. 1998 A symmetrical two-
mass vocal-fold model coupled to vocal tract and trachea, with application to prosthesis design.
Acta Acustica 84, 1135–1150.

Lucero, J. C. 1998 Optimal glottal configuration for ease of phonation. Journal of Voice 12,

151–158.
Lucero, J. C. 1999 A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset–

offset. Journal of the Acoustical Society of America 105, 423–431.
Mergell, P. 1998 Nonlinear Dynamics of Phonation: High-Speed Glottography and Biomechanical

Modelling of Vocal Fold Oscillations (Dissertation). Aachen: Shaker Verlag.
Norton, M. P. 1989 Fundamentals of Noise and Vibration Analysis for Engineers. Cambridge:

Cambridge University Press.
PaIº doussis, M. P. 1998 Fluid–Structure Interactions. Slender Structures and Axial Flow, Vol. 1.

London: Academic Press.
Perlman, A. L. & Durham, P. L. 1987 In vitro studies of vocal fold mucosa during isometric

conditions. In Laryngeal Function in Phonation and Respiration (eds T. Baer, C. Sasaki & K. S.
Harris). pp. 291–303. Boston: A College-Hill Press, Little, Brown and Company.

Pelorson, X., Hirschberg, A., van Hassel, R. R., Wijnands, A. P. J. & Auregan, Y. 1994a
Theoretical and experimental study of quasisteady-flow separation within the glottis during
phonation. Application to a modified two-mass model. Journal of the Acoustical Society of
America 96, 3416–3431.

Pelorson, X., Hirschberg, A., Auregan, Y. & Bailliet, H. 1994b Fluid dynamic aspects of
voiced sound production: 1) A modified two-mass model. In SMAC 93. Proceedings of the
Stockholm Music Acoustics Conference, July 28–August 1, 1993 (eds A. Friberg, J. Iwarsson, E.
Jansson, & J. Sundberg), pp. 234–239. Royal Swedish Academy of Music.

Pelorson, X., Hirschberg, A., Wijnands, A. P. J. & Bailet, H. 1995 Description of the flow
through the vocal cords during phonation. Acta Acustica 3, 191–202.

Peterka, F. & Sz .ooll .oos, O. 1999 Influence of the stop stiffness on impact oscillator dynamics. In
IUTAM Symposium on Unilateral Multibody Contacts (eds F. Pfeiffer & Ch. Glocker),
pp. 127–135. Netherlands: Kluwer Academic Publishers.



J. HORAŁ C� EK AND J. G. S̆VEC952
Reuter, R., Herzel, H. & Orglmeister, R. 1999 Simulations of vocal fold vibrations with an
analog circuit. International Journal of Bifurcation and Chaos 9, 1075–1088.

SimerskAŁ , C. & HorAŁ C� ek, J. 1996 Modelling of aeroelastic behaviour of a plate in channel.
Zeitschrift f .uur angewandte Mathematik und Mechanik 76, 477–478.

Steinecke, I. & Herzel, H. 1995 Bifurcations in an asymmetric vocal fold model. Journal of the
Acoustical Society of America 97, 1874–1884.

$SSvec, J., HorAŁ C� ek, J., $SSram, F. & VeselYŁ , J. 2000 Resonance properties of the vocal folds: in vivo
laryngoscopic investigation of the externally excited laryngeal vibrations. Journal of the
Acoustical Society of America 108, 1397–1407.

Titze, I. R. 1989 Physiologic and acoustic differences between male and female voices. Journal of the
Acoustical Society of America 85, 1699–1707.

Titze, I. R. 1994 Principles of Voice Production. Englewood Cliffs, NJ: Prentice-Hall.
Verdolini-Marston, K., Titze, I. R. & Druker, D. G. 1990 Changes in phonation threshold

pressure with induced conditions of hydration. Journal of Voice 4, 142–151.

APPENDIX A: EQUIVALENT MECHANICAL SYSTEM

The three masses m12m3 of the equivalent mechanical system shown in Figure 3 were
calculated from the following equations:
(a) equivalent mass of the system:

m ¼ m1 þm2 þm3; ðA1Þ

(b) equivalent static moment

�m1ðL=2Þ þm2ðL=2Þ ¼ me; ðA2Þ

(c) equivalent moment of inertia:

m1ðL=2Þ
2 þm2ðL=2Þ

2 ¼ I þme2: ðA3Þ

The kinetic energy T of the system is

T ¼
1

2
m1 ’ww

2
1 þ

1

2
m2 ’ww

2
2 þ

1

2
m3

’ww1 þ ’ww2

2

� �2
; ðA4Þ

and the potential energy is

V ¼
1

2

Z L

0

cw2ðx; tÞ dx

¼
1

2
c

Z L

0

w1ðtÞ þ x
w2ðtÞ � w1ðtÞ

L

� �2
dx

¼
1

6
k ½w21ðtÞ þ w22ðtÞ þ w1ðtÞw2ðtÞ�; ðA5Þ

where expressions (2) and (3) of the main text were used for wðx; tÞ and the notation
k ¼ cL was introduced for the coefficient of stiffness of the elastic foundation.
Substitution of T and V in the Lagrange equations:

d

dt

@T

@ ’wwj
�

@T

@wj
þ

@V

@wj
¼ 0 ðj ¼ 1; 2Þ ðA6Þ

gives the mass and stiffness matrices (6) in the equations of motion (5) of the equivalent
mechanical system. The equivalent external (excitation) forces (4) were calculated from the
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balance conditions:

F1ðtÞ þ F2ðtÞ ¼ h

Z L

0

*ppðx; tÞ dx; F2ðtÞL ¼ h

Z L

0

*ppðx; tÞx dx: ðA7Þ

APPENDIX B: LIST OF FUNCTIONS AND INTEGRALS INTRODUCED IN
ANALYSIS

The functions and integrals introduced in expressions (22), (23) and (24) for aerodynamic
forces are as follows:

I1ðxÞ ¼ 1=2

Z x

0

½yðy� LÞ=HðyÞ� dy; ðB1Þ

I2ðxÞ ¼
Z x

0

½y=HðyÞ� dy; I3ðxÞ ¼
Z x

0

½1=HðyÞ� dy; ðB2Þ

I4ðxÞ ¼
Z x

0

½ðy� L=2Þ %UU0ðyÞ=HðyÞ� dy; I5ðxÞ ¼
Z x

0

½ %UU0ðyÞ=HðyÞ� dy; ðB3Þ

where

HðyÞ ¼ H0 � aðyÞ; ðB4Þ

g1ðxÞ ¼ I4ðxÞ þ %UU0ðxÞðx=2Þðx� LÞ=HðxÞ; g2ðxÞ ¼ I5ðxÞ þ %UU0ðxÞx=HðxÞ; ðB5Þ

g3ðxÞ ¼ %UU0ðxÞ=HðxÞ; g4ðxÞ ¼ ðx� L=2Þ %UU
2

0ðxÞ=HðxÞ; g5ðxÞ ¼ %UU
2

0ðxÞ=HðxÞ; ðB6Þ

J1 ¼
Z L

0

I1ðxÞð1� x=LÞ dx; J2 ¼
Z L

0

I2ðxÞð1� x=LÞ dx; ðB7Þ

J3 ¼
Z L

0

g1ðxÞð1� x=LÞ dx; J4 ¼
Z L

0

g2ðxÞð1� x=LÞ dx; ðB8Þ

J5 ¼
Z L

0

g4ðxÞð1� x=LÞ dx; J6 ¼
Z L

0

g5ðxÞð1� x=LÞ dx; ðB9Þ

J7 ¼
Z L

0

I3ðxÞð1� x=LÞ dx; J8 ¼
Z L

0

g3ðxÞð1� x=LÞ dx; ðB10Þ

J9 ¼
Z L

0

ð1� x=LÞ dx ¼ L=2; J10 ¼
Z L

0

I1ðxÞðx=LÞ dx; ðB11Þ

J11 ¼
Z L

0

I2ðxÞðx=LÞ dx; J12 ¼
Z L

0

g1ðxÞðx=LÞ dx; ðB12Þ

J13 ¼
Z L

0

g2ðxÞðx=LÞ dx; J14 ¼
Z L

0

g4ðxÞðx=LÞ dx; ðB13Þ

J15 ¼
Z L

0

g5ðxÞðx=LÞ dx; J16 ¼
Z L

0

I3ðxÞðx=LÞ dx; ðB14Þ
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J17 ¼
Z L

0

g3ðxÞðx=LÞ dx; J18 ¼
Z L

0

ðx=LÞ dx ¼ L=2: ðB15Þ

APPENDIX C: GOVERNING EQUATIONS FOR TUNING OF
THE MECHANICAL SYSTEM

C.1. Calculation of the Elastic Foundation Stiffness k

The equation of motion (5) can be rewritten for the undamped mechanical system
vibrating in vacuo as

M .VVþ kK0V ¼ 0: ðC1Þ

where instead of the stiffness matrix K given by equation (6) the matrix K0, which does not
depend on the coefficient of stiffness of the elastic foundation k, was introduced as

K ¼ kK0: ðC2Þ

Assuming the solution of the equation of motion in accordance with equation (42) as

V ¼ V0e
st; ðC3Þ

equation (C1) yields

ðKþ *ss2j MÞ *VV0j ¼ 0; ðC4Þ

where *ssj and *VV0j ðj ¼ 1; 2Þ are the eigenvalues and eigenvectors for the undamped
mechanical system in vacuo. Substituting K from equation (C2) into the (C4) and dividing
by k gives

ðK0 þ *ss2j =kMÞ *VV0j ¼ 0: ðC5Þ

Denoting

*ss20j ¼ *ss2j =k ðC6Þ

we can first solve the eigenvalue problem

ðK0 þ *ss20jMÞ *VV0j ¼ 0; ðC7Þ

where the matrices K0 andM are defined only by the geometry and material density of the
vocal folds. Subsequently, the stiffness coefficient k is calculated from equation (C6) for
j ¼ 1, where the desired fundamental eigenfrequency (first eigenvalue *ss1) is substituted.
Simultaneously, it follows from equations (C4)–(C6) that neither the ratio of the

eigenfrequencies *ss1 : *ss2 nor the eigenvectors *VV01 and *VV02 depend on the stiffness k.

C.2. Calculation of the Damping Coefficients e1 and e2

According to equations (5) and (7), the equation of motion of the proportionally
damped mechanical system vibrating in vacuo is given as

M .VVþ B ’VVþ KV ¼ 0; ðC8Þ

where

B ¼ e1Mþ e2K: ðC9Þ

Substitution of V from equation (C3) into (C8) gives
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½Kþ sjBþ s2j M�V0j ¼ 0; ðC10Þ

where sj and V0j are the eigenfunctions and eigenvectors for the damped mechanical
system vibrating in vacuo. Left multiplication of equation (C10) by VT0j and usage of
equations (C4) and (C9) yields the following relationship between the eigenvalues of the
damped ðsjÞ and undamped ð*ssjÞ mechanical systems:

�*ss2j þ sjðe1 � e2 *ss2j Þ þ s2j ¼ 0: ðC11Þ

Introducing the notation

sj ¼ ReðsjÞ þ iImðsjÞ and *ssj ¼ iImð*ssjÞ ðC12Þ

equation (C11) can be divided into two equations for real and imaginary parts:

½Im2ð*ssjÞ�2 þ ReðsjÞfe1 þ e2½Imð*ssjÞ�2g þ ½ReðsjÞ�2 � ½ImðsjÞ�2 ¼ 0 ðC13Þ

fe1 þ e2½Imð*ssjÞ�2g þ 2ReðsjÞ ¼ 0: ðC14Þ

From the second equation rewritten for j ¼ 1, 2 the damping coefficients e1 and e2 can be
calculated

e1 ¼ 2
Reðs2Þ½Imð*ss1Þ�2 � Reðs1Þ½Imð*ss2Þ�2

½Imð*ss2Þ�2 � ½Imð*ss1Þ�2
; e2 ¼ 2

Reðs2Þ � Reðs1Þ

½Imð*ss1Þ�2 � ½Imð*ss2Þ�2
: ðC15;C16Þ

Assuming that the eigenfrequencies of the damped and undamped systems are
approximately the same, i.e., ImðsiÞ � Imð*ssiÞ, and introducing the eigenfrequencies fj ¼
sj=2p and 3 dB half-power bandwidths Dfj ¼ �2Reð fjÞ ¼ �ReðsjÞ=p, formulas (C15) and
(C16) can be finally rewritten as equations (46), which were used for calculation of the
damping coefficients e1 and e2 according to the experimental data.
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